Exercise VII

- 1. Prove that there is a real number L such that $L^3 = 2$.
- 2. Which one of the following functions is continuous at the indicated point?

(i)
$$f(x) = \frac{\sin(x)}{x}$$
 at $x = 0$.
(ii) $f(x) = \begin{cases} \frac{\sin(x)}{x}, & x \neq 0\\ 1, & x = 0. \end{cases}$ at $x = 0$
(iii) $f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3\\ 7, & x = 3. \end{cases}$ at $x = 3$.
(iv) $f(x) = \begin{cases} \frac{1}{x}, & x \neq 0\\ 2, & x = 0. \end{cases}$ at $x = 0$.

3. Use the properties of limits to prove carefully that the function

$$f(x) = \frac{1}{x^2 + 4}$$

is continuous at every $x \in \mathbb{R}$.

- 4. Prove carefully that the function f(x) = |x| is continuous at every $x \in \mathbb{R}$. Note that you will have to pay special attention to the point x = 0 and use left hand and right hand limits at that point.
- 5. Investigate continuity of the following functions

(i)
$$f(x) = \begin{cases} 2x, & 0 \le x \le 1\\ 2-x, & 1 < x \le 2 \end{cases}$$

(ii) $f(x) = \begin{cases} x^2, & 0 \le x \le 1\\ 2-x, & 1 < x \le 2 \end{cases}$