Exercise VII

1. Prove that there is a real number L such that $L^{3}=2$.
2. Which one of the following functions is continuous at the indicated point?
(i) $f(x)=\frac{\sin (x)}{x}$ at $x=0$.
(ii) $f(x)=\left\{\begin{array}{ll}\frac{\sin (x)}{x}, & x \neq 0 \\ 1, & x=0 .\end{array}\right.$ at $x=0$
(iii) $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x-3}, & x \neq 3 \\ 7, & x=3 .\end{array}\right.$ at $x=3$.
(iv) $f(x)=\left\{\begin{array}{ll}\frac{1}{x}, & x \neq 0 \\ 2, & x=0 .\end{array}\right.$ at $x=0$.
3. Use the properties of limits to prove carefully that the function

$$
f(x)=\frac{1}{x^{2}+4}
$$

is continuous at every $x \in \mathbb{R}$.
4. Prove carefully that the function $f(x)=|x|$ is continuous at every $x \in \mathbb{R}$. Note that you will have to pay special attention to the point $x=0$ and use left hand and right hand limits at that point.
5. Investigate continuity of the following functions
(i) $f(x)=\left\{\begin{array}{ll}2 x, & 0 \leq x \leq 1 \\ 2-x, & 1<x \leq 2\end{array}\right.$.
(ii) $f(x)= \begin{cases}x^{2}, & 0 \leq x \leq 1 \\ 2-x, & 1<x \leq 2\end{cases}$

